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BEHAVIOR OF THE IONIZATION CROSS SECTION IN HIGH

ENERGY ELECTRON-HYDROGENIC ATOM COLLISION

K. Omidvar

Laboratory for Theoretical Studies, Goddard

Space Flight Center, Greenbelt, Maryland

The ionization cross section per unit range of the
energy ¢ of the ejected electrons for collision of an
incident charged particle of high energy E with an
atomic system is given by dQ/de = E—I[A(e)an + B(e)l,
where A and B are functions of ¢, and the total cross
sectlon is given by Q = E-l[ATan + BT]. The coefficienté
A(e) and B(g) for the partiéular case of the atomic
hydrogen are derived analytically as an expansion with
respect to k = fe¢. _ The expansion converges for all
values of k. By integrating A{¢) and B(e¢) with respect to
€, AT and BT are obtained and compared with the values
given by Bethe using a different method. The coefficients
“of the first two leading terms of the expansion of d@/d¢
with respect to ¢ or l/e when ¢ is-small or large is found. A re-
lationship for the average energy of the ejected e « ctrons
is given. Different features of the high energy imp -t
ionization and certain comnection between the ionizatiow

and. the discrete level excitation is discussed.
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I. FORMULATION

Bethe in a memorable articlel has shown that for inelastic collision of
a charged particle of high energy E with an atom the cross section dependes on E,
and linearly on two parameters which are functions of the atomic structure and
the energy transferred to the atom. For ionization of an hydrogenic atom of nuclear
charge 2 by an electron with non-relativistic high energy B, the cross section
per unit range of the energy ¢ of the ejected electron and the total cross section

are given respectively by

-1
dQ/de ~ (Z%k,2) (A(e) gnk, 2 | B(e) Ine2, k2 _ 82 B[22, (1)
emax )
- dq -t '
Q = JO a‘c‘ de ~ (Z4k12) [AT kalz " B'r]ﬂai (2)

with a  the Bohr radius and E and ¢ in rydbergs. A(g) and B(¢) are functions of
e AT and. BT are dimensionless constants and independent of the nuclear charge,
and are integrals of A(g) and B(g) with respect to ¢. €y 18 the maximum value
of ¢« Egs. (1) and (2) will be derived here. Bethe has derived (1) and (2),
and using sum rules for the generalized oscillator strength he has evaluated AT
and BT for the hydrogenic atoms. Here A(¢) and B(¢) are derived analytically,
and by integrating them over ¢, values of AT and BT are rederived.

With the system of an incident electron and an hydrogenic atom of nuclear
charge 72 let’gi,’gé, and. E: represent the momenta of the ineident, scattered,
and ejected electrons, and'g' =’§; -'gé. We take h = m = 1 with m the mass of

the electron, and throughout we express energy in rydbergs. Then E = k;z and
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e = k'2. In this way E and ¢ take the dimension of the inverse of the length

squared, but numerically their values are given by rydbergs. In the Born

approximation
€
j’max aQ ’ (3)
= Py de ,
k; ks
dq _ g [ & ()
de 828(27/a2 + €) X' de
k' - x
1 ' 2

where d.f/de 1s the generalized oscillator strength per unit range of ¢ defined by

2
_C_i_f Z/a.o+e
de

fk'dk' kll iK' - £116>12 , (5)
2}{!

with lls> and lk > the ground and the continuum wave f‘unctn_ons of the atomic electron
IK > is normalized such that asympbotically 1k>~ (gn)'a/ 2 ik - E e

1_n1,roduce the dimensionless vectors
X, ko, k and K by k'1 = 1k, kb = pkp, X' = pg, and K' = pK, vhere p = Z/ao.

Evaluation of df/de then leads to” 2

20(ma2) SR (6)

o,
O

de  gap(y - o2k, b - ks



e—gcp/ktKZ + %15 (l + k2)] , ¥
2 2
K[1 + 2(x2 +k2) + (K2 -k®)Z]° K2 - %2 + 1

FK) = : (7)

We seek an expansion of P(X) which would converge for all values of the
momentum transfer K. Similar expansion with useful application has been
introduced by Lassettre® for excitation of the non-~-hydrogenic atoms and
deduction of the form of the differential cross section from experimental data.
It is feasible that the present expansion will also find usefulness for
ionization of the non-hydrogenic atoms. F(K) in (7) can be expanded in terms of
K for small and large values of K, corresponding to the limits of the integral
in (6) at high energy, but the integrals of the two expansions may and, in fact,
do differ by a constant. To overcome this difficulty we change the variable of

integration from K to ¢. This results in

F(K)dK .,

s1n4@ [ (L + k®) sin ¢

de.
2(2k)5 2K cos @ - (1 - k2) sin ¢ ] (8)

To separate out the logarithmic term in the integral in (6) we introduce @, a8

the zeroth order term of the Taylor's expansion of ¢ with respect to K2, Then
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:pl-:(P_(Po,QPO:'ban 1_k2

4

and by direct substitution

~29o/k R
© J 2P /R . 4
e sin®*(Po + ¢.) [2k cot @, - 2 )
6(2)5 (1 + x2) 1) [2k cot - 2 (1 + 2k®)]dp,

fF(K)ouc =

(10)

From (7) and (9) it is seen that for all values of K and k, ¢, lies between 0 and

The transcendental functions in the integrand in (lO) can then be expanded in

-
With this procedure

powers Of ¢, and the integration can be carried out term by term.

we Obtain

- -23%0 Inlsi + o2 - 2iPo. -1 l\ti(po -1

JPx)ax = (sin %) 1 Re (327 - ke™ b4 e € )

6(1 + x2) (1 +x2)* 8(x)°
Z-Q P, )m
3 1
i (1 + x2)* ZAm((PI) S ]’ (11)
m =1



w

— oPAp @2n . Lig
1 1+ k¢ 1 \ n m 2i%o oo om
A,(®) =3 ok PD[ %ol TaT ) (2n)'.> fe (32" - he™" b e )
n=1

+ g2 ] 9o, n- %o m -
+ 1 2k2k Re (3" 1 u821¢obm 1, ehl@ocm l)]
(12)

where B = 1/k, a = B, b=pg -1, ¢ = g-2i, and Bn is Bernoulli's number.
Re stands for the real part of a complex quantity.

In this way, through (6), dQ/de is expressed as a converging sum over ?,
for any value of the momentum transfer, and the problem of integration is
reduced to a summation. For high energy incident electroms to first order,
k - kg™ (1 + kz»bkl, and k, T ko = 2k . Therefore the lower and the upper
limits of the integral in (11) are given at high emergy by @, = k/2k ®
and Py = 9y respectively. Evaluating (11) at the limits, combining it with
(6), and comparing the result with (1) gives

29e-2f3cpo ,

I T e )

B(e) = A(¢) [ZAm(CPo) x (?-(%?.—ﬂ— - f'n% (1 + ka)] . (1k)

m=1
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Substitution of (1) into (3) and comparison with (2) shows that

©w «© © «®
d =D . . 2 A2
A o= | ale)ee = j A7, B = [ nle)de g_j B(=)dk (15)
T % o © o >
where, because of the form of A(¢) and B(¢), the upper limits of the integrals
. have been extended to infinity without loss of accuracy4. Here, by definition,
A(x®) = Ale)de/dx® = p®A(e). Similarly B(k2) = u®B(¢), and by (13) and (1k)
" AT and B become independent of the nuclear charge. Numerical evaluation of
T .
the integrals in (15) yields
[ I
AT =z l-ljj65 BT = )¢02(325. (15a)
This complebes the derivation of Egs. (1) and (2). Using these values of AT
and BT in BEq. (2) we can write this equation alternatively as
4 Tig 22
Q~ —= ghCk® , M2 =0.28341 , C = 1/0.047483 (2a)
77k

1

Eq. (2a) is the form originally given by Bethe with M® = 0.285 and C = l/0.048.
A more accurate evaluation of M2 and C using Bethe's method has been done by
Inokuti®, and values given by (2a) are in agreement with these values to all
places. Similarly Tnokuti® has given the numerical values of A(e) and B(e) in

slightly different form, and (13) and (14) agree with these results.
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IT. RESULTS AND DISCUSSION i

Tt is convenient to define by dQo/de¢ the cross section which is obtained
by (W) by replacing the generalized oscillator strength by the optical
oscillator strength, dfo/de s given by the first non vanishing term of the

w17l e
Taylor's expansion of eX " T in (5). Then by straightforward integration,

1 j 27 e—'QBQPO )
ar == (z8/a 2 + €) (k'dk'|<k'|r|1is>|® =S x - . (16)
ofe =% © ~o 32 (1 - e TPy (1t kR)E
Comparison of (16) with (13) shows that
2 o "1 1 2
Ale) = 5 vk f a'| ' | ¢ [ 18> |2, (17)

relating A(e¢) to the squared modulus of the dipole moment, integrated over
directions of the ejected electron. Substitution of (16) in (&), replacement of the
limits in the integral in (4) by their first order term, and an intergration

leads with the use of (13) to

dQ, ornA(e) hklz
2~ In . (18)
de 72E 1+ k2 ,

Comparison of this with (13) and (14) shows that (1) can be written

dg ~ 1 on mh(e) Z (Wo
g 3 -+

)m
de ) de 72}3 Am(q)o) X —‘—ﬁ-—-——m. -

(19)

m=1
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Then, contribution of the small scatbering angle, or equivalently small
momentum transfer by the incident electron, to the cross section represented
by the logarithmic term in (1) is half the contribution of the dipole term
integrated over all range of the momentum transfer. This provides a convenient
way to‘avqid the introduction of a cut off in the integral in (&) for the
distant collisions.

The two terms in (19) correspond to the dipole and the non-dipole parts
of the cross section, and they are comparable in magnitude throughout the
non-relativistic reglon of the incident energy (Cf. Fig. 3). This is in
contrast to the excitation of the low lying levels of the atoms where at
energies several times the threshold energy the dipole part dominates the
total cross section. This also indicates that while photo-excitation is closely
related to the high energy electron impact excitation, such relationship does
not exist between photo-ionization and the electron impact ionization.

An interesting part of the present paper is to find the leading terms of
the expansion of dQ/de in terms of ¢ or l/e where ¢ is small or large, respec-
tively. Using the explicit form of Am(m) given by (12) we find after some
algebraic manipulation that we have the following limiting cases when k is

small or large

<«

a9 20 ro 7
X ~ R 2 4 . - - ps
oo m. K~ o 1 & +11) + 2 (13e% - 4h3/5)k2,

=]

|
i
8N 8

_ ¢ ATy = 17661, (20)
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s , =
T o+ OlE.
-~ .5&_ (l KN i:{- R ) °
ke P ; %k
(21)
Tt also is necessary to expand A(¢) for small and large ¢. In doing so we can }
-1
establish that for 0 ¢ k < 1 the factor (1 - e—gn/k) whidy appears in (13)
is equal to unity plus terms of the order less than k*7. Then for the
expansion considered here this factor can be put equal to unity and we obtain
9% 11
Ae) ~ = -F) (22)
k- O 5“-
28 T
~ e kel -
S — 2
K o o 3k EI— . (23)
Substitution of (20) through (23) into (14) leads to
1
Be) ~ = (B, - B,k?), B, = k.62393, B, = 6.35310 s (24)
k-0
~ 4 ( 2
1 -2 (25)
=R
K - o KK 5k2
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With these values of A(g) and B(e¢) Eg. (1) can be written

- | L e
dQ/de  ~ (2%,%)  [(8, - 4,3®) ;K 4B, - Bk JERa -
E> 1, ¢<<1
Ay = 3.12587, A = 11.465 (26)
hra @ 2
é.@’_ —~ (s} <- - 2Z . ) .
= 2
de E(aO e P 5ao € (
l<eg <E 27)

Eq. (26) is a wvalid expression when the incident and the scattered
electrons have high, and the secondary electron has low, energies. Most
contribution to the total cross section is due to this energy region of the
secondary electron. Eg. (26) is related to‘the excitation to a high principal
quantum number n of the normal state of the hydrogen atom in the following
way . Let Q(n) be the excitation cross section. By writing ¢ = - Z2n-2a;2,
where ¢ 1s the energy of the states with the principal quantum number n,

and notieing that dQ/de is a continuous function of ¢ when ¢ becomes negative,

through the relationship Q(n)dn = (dQ/de)de we obtain up to n™* terms:

-1 . > >
a(n) ~ 2(niZ4k12) [a, +A /%) k2 + (B + B /n%)]ma " . (28
n >>

8

Brown® has evaluated Q(n) for n >> 1 by an independent method, and (28)

agrees with his results. Similarly for high n and high incident energies
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(28) is in agreement with the results of the numerical integration of G(n) by
the author®.

Concerning Eq.,(??) the leading term in this equation is the same as the
elastic cross section between two electrons in a frame of reference where
one of the electrons is initially at rest and its energy becomes g after the
collision. The cross section in this case 1s the same classically and quantum
mechanically, the classical cross section being given by the Rutherford formula®©
and the quantum mechanical by the Moeller's formulall. The reason for the agree-
ment of the leading term with the elastic cross section is given in reference 10.
Eq. (27) in addition gives a second order term which is due to the binding of
the atomic electron to the nucleus. This term agrees with the classical cal-
culation of Vriens and Inokuti, where quantum mechanical momentum distribution
is assumed for the bound electron {private communication).

When ¢ becomes comparable to E, the next higher term in E and also the
contribution from the second Born approximation should be included in (27).
In addition, the exchange effect for the identity of the two electrons should
be taken into account. Because of the difficulty in calculating the second
Born approximation this will not be done here. DNeglecting the second term in
(27), the inclusion of the exchange effect in the leading term of (27) leads

to the Mott's Tormulal®

1 -

dqQ ~ AL s 1 1
E [ 2 (B -2 B -e) ]

(29)
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Concerning the contribution of the exchange effect to the total cross
section it should be pointed out that this is of the order of 1/E, and
therefore it becomes negligibly small at high enough incident energies. This
can be seen by integrating (27) over the energy region where ¢ is comparable
to E.

A quantity of interest is the average energy of the ejected electrons in

an ionization process. This quantity will be calculated below. By definition

Crax Cmax

- aq daQ
e—‘f € 4o de /J de de (30)

o] o}

By writing ¢ = p®k® and by meking use of (1) we find that

kf -1 : X2 -1

- 1
T ~ 5—)2 ‘U‘n (4(k%) guk? + B(x?)] ac?} 1{ JO k5[A(k2) gk 4 B(x®) Jax® }

(31)

The integrals occuring in the denominator of (31) are given by (2). When k is
large A(k®) and B(k2) are proportionai to k2 and k™% respectively [Cf. Egs. (23)
and (25)]. The upper limit of the integral with respect to A(k2) in the numerator
of (31) can then be put equal to infinity. For the integral with respect to

B(k®) we have up %0 the first order terms



2 . 2
k2 -1 a K2 -1

j £2B(k2)dk? = f k2B(k2)dk? 4 | & kéd_kz
I o ,

a
= [ kB - bga g bl ® - 1),
(¢]

where a is a value of k® at which B(k®) reaches its asymptotic form. In this

way we Tind that

“with C and D dimensionless constants given by

v

C =15 + .J‘ sz(kz)dkz = 4.606 ’
L0

a
D= I k2B(k2)dk2 - hgna = - 2.125
i e

and A and BT given by (15a).
T

(32)

(33)

(34)



..1:)..

It is more appropriate to use an asymptotic form for B(kz) in which
the exchange effect is taken into account. Comparison of the leading term
of (25) with (29) shows that when exchange is included the asymptotic form

of B(k®) is given by
L ]: L + ___.._];._._ - _...__.L____. :J .
k4 (kl'Z - k2)2 kg(klz - k2)

By making use of this form in (51), and noticing that when exchange is included
1
Cpox = B pg(klz - 1), we find that (33) is still valid provided we replace D

in this equation by
ex
D7 =D 4 4(1 - m8) = - 6.441 (35)

It should be realized that although both the numerator and the denominator
of (33) are of the form gnklz + constant, the origin of the logarithmic terms
is quite different. The berm in the denominator comes entirely from small
momentum transfer, that in the numerator partly from these and partly from
large momentum transfer. This indicates a large spread in the energy of the
ejected electrons.

With or without exchange,z as the incident energy increases reaches a
limit given by (C/AT) (Z/ao)2 = 4.063 Z% ryd. Then the maximum value of g
for an elechron bounded Lo a central charge Z is proportiocnal to its binding
energy, although from (33) it is seen that the higher Z the higher the incident

energy at which this maximum is reached. For many electron atoms it can be
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said that the maximum value of the average énergy of an ejected ‘electron is
roughly proportional to the square of the effective charge seén By the electron-
before its ejection:

We also notice that for atomic hydrogen the maximum energy loss. by the -
incident electron cannot exceed 5.063 ryd. Bethe?’ '© has shown that the
energy loss by an electron is an inelastic collision with“theﬁhydrogen'aftm
reaches the value of 2 ryd at high energy, and that 28.54% of the collisions
lead to ionization. Using these informations we find that at high incident
energies the average energy loss of an incident electron in excifation of all
the discrete states of the atomic hydrogen reaches the value of 0.7887 ryd.

Figures 1 through 4 illustrate some of the results obtained. Fig. 1 is
the well known graphical comparison of the Bethe approximation with the Born
approximation, given here for the specific case of ionization. 72EQ is plbtted
versus gn(E/7%), where by Eq. (2) a straight line is obtained for the Bethe
approximation. In the case of the atomic hydrogen the two approximations agree
with each other. for energies larger than about 20 threshold units. For atoms
with larger central charge the agreement is reached at still higher energiles.

Fig. 2 is a plot of the dimensionless coefficients A(k®) and B(k®) versus
the dimensionless parameter k= = aie/zz. The coefficient A(k®) which is pro-
portional to the dipole moment, Eg. (17), is appreciable only for small values
of kz, corresponding to the small momentum transfer by the incident electron
arising from the distant collisions. For large k? it falls off as k °. The
coefficient B(k®) approaches its classical limit of 4/k* given by the Rutherford
formuls,. The figure shows clearly the transition bebtween the‘qpantal fegiOn,

small ¢, and the classical region, large ¢. In the classical impuléelapproxi—
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mation’® ~ 1€ the total ionization cross section at high incident energy is
specified by (2) where A =Oend B = 2/3.

In Fig. 3 the ratio of the logarithmic part of the cross section as
given by (2) to the total cross section is plotted. It is evident that
contribution of the dipole term given by the logarithmic term to the total
cross section remains a fraction of the total cross section for the whole
non-relativistic range of the incident energies.

In Wig. L4 a plot of the average energy of the ejected electrons versus
the incident energies is given. The average energy reaches the limit of
4.063 72 ryd as the incident energy tends to infinity, signifying the limit
of the impulse received by th- atom. Relativistic corrections are neglected.

To complete the discussion we list the coefficients A{n) and B(n) originally

given by Bethe for the electron impact excitation. Recalling the definition

of G(n) we can write in anology to (1)

Q(n) - (z*k, 2)™ [A(n)znklz " B(n)]nai , k2= aiE/Zz' (36)
The dimensionless constant and charge independent coefficients A(n) and B(n)

are given for n = 2 through n = 12 in Table I.27. For higher values of n Eq. (28)

can be used.
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Table I. Values of A(n) and B(n)

n 2 3 L 5 6 7 8 9 10 11 12
n®A(n) 17.7577 9.6108 T.9165 1.2596 6.9313 6.7423 6.6231 6.5430 6.4863 6.4448 6.#155‘
n®B(n) 12.2777 10.705k 10.0612 9.7647 9.6051 9.5096 9.LL78 9.4056 9.3755 9.353% 9.350h4
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Tt is interesting to notice that the ration A/B for excitation and
ionization is a monotonically decreasing function of the energy transferred
t0o the atom, and at high energy transfer it approaches zero. The ratio of
the logarithmic term to the non-logarithmic term in the cross section is
(A/B) 4nk,®. For an incident energy of 1000 ryd and Z = 1, this ratio is
10.022 for n = 2 excitation, and is 1.558 for ionization.i

The foregoing results for electron impact ionization and excitation are
also applicable to the proton impact ionization and excitatioh. This results
from the fact that the cross section is proportional to the square of the
charge of the projectile, and in the approximation stated following Eq. (12) it
depends on the initial relative veloclty of the projectile-target étom only,
and is independent of the reduced mass of the system (Cf. Ref. 2). Thus all
equations derived so far can be used for proton impact provided E is replaced by
(m/M)Ep, where M and Ep are the mass and energy of the incident proton. In this
way (36) agrees with the high energy analybtical expression of Bates and Griffing18
up to, and excluding, the k;4 terms for n = 2 and n = 3 proton impact excitation;
and (2) gives the same value at 3.5 MeV incident protons as the graphical Born
calculation of Bates et alls, and Peachle, for proton impact ionization.
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Figure Captions

Figure 1. A comparison of the Bethe's approximation, Eq. (2), with the
Born approximation. Q is the ground state ionizatiqp of an
hydrogenic atom.

Figure 2. A plot of the coefficients A(k®), B(kZ®), and 4/k*.

Figure 3. QD is the logarithmic part of Eg. (2)‘and R is the ratio of this
part to the total cross section.

Figure 4. A plot of the average energy of the ejected electron versus the
incident energy. Born approximation has been used for incident
energies less than 25 ryd, and Eg. (33) for energies above this

value.
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